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bstract

The total solubility parameter (δ) values were effectively predicted by using computed molecular descriptors and multivariate partial least squares
PLS) statistics. The molecular descriptors in the derived models included heat of formation, dipole moment, molar refractivity, solvent-accessible
urface area (SA), surface-bounded molecular volume (SV), unsaturated index (Ui), and hydrophilic index (Hy). The values of these descriptors
ere computed by the use of HyperChem 7.5, QSPR Properties module in HyperChem 7.5, and Dragon Web version. The other two descriptors,
ydrogen bonding donor (HD), and hydrogen bond-forming ability (HB) were also included in the models. The final reduced model of the whole

ata set had R2 of 0.853, Q2 of 0.813, root mean squared error from the cross-validation of the training set (RMSEcvtr) of 2.096 and RMSE of
alibration (RMSEtr) of 1.857. No outlier was observed from this data set of 51 diverse compounds. Additionally, the predictive power of the
eveloped model was comparable to the well recognized systems of Hansen, van Krevelen and Hoftyzer, and Hoy.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The solubility parameter (δ) is an intrinsic physicochemical
roperty of a substance. It provides an easy numerical method
f fast prediction the basic properties of materials (Bustamante
t al., 1998), interaction between materials including drug-
xcipient, and drug-plasma protein (Forster et al., 2001), drug
bsorption (Roy and Flynn, 1998; Martini et al., 1999; Yen et
l., 2005), formulating blends of solvents (Subrahmanyam and
uresh, 1999), solvent selection for organic reaction (Gani et al.,
005), and dosage form technology and design (Hancock et al.,
997; Minghetti et al., 1999; Wagner et al., 2005).

One of the essential functions of the solubility parameter
s for evaluating the possibility of mixing between substances.
ubstances with similar values for δ are possibly miscible due to

he balance of energy of mixing released by interactions within
he substances and the energy released by interaction between

he substances. Greenhalgh et al. (1999) categorized excipients
ased on the difference between the solubility parameters of
xcipients and drugs (�δ). It was concluded that substances with
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�δ < 7.0 MPa1/2 were likely to be miscible, whereas those with
δ > 10 MPa1/2 were likely to be immiscible.
The solubility parameter concept was first proposed by Hilde-

rand as the square root of the cohesive energy density:

=
√

�Evap

V
(1)

here �Evap and V are the energy or heat of vaporiza-
ion and molar volume of the liquid, respectively. This one-
imensional solubility parameter was applied primarily to a
onpolar liquid. The solubility parameter concept has since been
xtended to various systems such as polar, polymer–solvent, and
olymer–polymer systems. Hansen (1967) extended the original
ildebrand parameter to three-dimensional solubility parame-

er for the polar and hydrogen bonding systems. According to
his concept, the total solubility parameter (δ) is separated into
hree different types of partial solubility parameters relating to
he specific intermolecular interactions:

2 2 2 2
= δd + δp + δh (2)

here δd, δp, and δh are the dispersion, polar, and hydrogen bond
artial solubility parmeters, respectively. For liquids, the δd value
ay be obtained by homomorph methods (Barton, 1975). The
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h (cal/cm3)1/2 was calculated directly from
√

5000N/V , where
is the number of alcohol groups in the molecule, V is the molar

olume, and the number 5000 originates from the approximate
alue for the H· · ·O bond energy of 5000 cal/mol (Hansen and
kaarup, 1967). The δp component was related to the cohesion
nergy of a fluid in terms of relative permittivity, refractive index,
nd dipole moment (Hansen and Skaarup, 1967). Hansen’s total
olubility parameter corresponds to the Hildebrand parameter,
evertheless these two quantities are probably different when
hey are obtained by different methods.

These individual solubility parameters can also be predicted
rom various methods including the group contribution calcula-
ions. According to van Krevelen (1990), each parameter can be
stimated using these following equations:

d =
∑

Fdi∑
Vi

(3)

p =
√∑

F2
pi∑

Vi

(4)

h =
√∑

Ehi∑
Vi

(5)

here Fd is the dispersion component of giving δd, Fp the polar
omponent, Eh the contribution of hydrogen bond forces to the
ohesive energy, and i is a contributing group. The total solubility
arameter is then estimated using Eq. (6):

=
√

δ2
d + δ2

p + δ2
h (6)

nother group contribution system used to estimate total and
artial solubility parameters was proposed by Hoy (1970). In
ccordance with Hoy’s system, the values of δ, δp and δh are
nitially evaluated, δd can be determined by the difference using
q. (7):

d =
√

δ2 − δ2
p − δ2

h (7)

here are many methods for estimating δ experimentally, includ-
ng inverse gas chromatographic (Choi et al., 1996; Zhao and
hoi, 2001; Price and Shillcock, 2002), dissolution calori-
etric measurements (Rey-Mermet et al., 1991), and solubil-

ty method (Martin et al., 1980; Rey-Mermet et al., 1991).
n addition, computational methods have also been applied
o the estimation of the solubility parameters of solvents,
ydroxyethyl-, and hydroxypropyl cellulose, and alkyl phe-
ol ethoxylates (Choi et al., 1992; Kavassalis et al., 1993;
hoi et al., 1994; Suga and Takahama, 1996). The accuracy
f the calculations, however, relies on the correct application of
olecular force field parameters and the building of the bulk

tructure.

In this study, quantitative structure-property relationship

QSPR) was developed for predicting solubility parameter val-
es. Molecular descriptors used were calculated directly from
olecular structures, and partial least square (PLS) statistics was

mployed for building the predictive models.

d
i
t
(
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. Methods

.1. Data set and δ values

The experimental results of δ values for 51 compounds were
aken from literature (Hancock et al., 1997; Barra et al., 2000;
oharshadi and Hesabi, 2004). These δ values obtained from
ifferent sources were averaged and listed in Table 1. The well
stablished Hansen solubility parameters were calculated using
olecular modeling pro plus (ChemSW). Three different cal-

ulations were performed with the methods outlined by Hansen
proprietary algorithm of ChemSW), van Krevelen and Hoftyzer
van Krevelen, 1990), and Hoy (1970). These calculated values
re presented in Table 1.

.2. Molecular modeling and molecular descriptors

Molecular modeling calculations were performed using
yperChem 7.5 for Windows (Hypercube, FL, USA). Geom-

try optimization was performed initially by AMBER force
eld method of molecular mechanics and subsequently using the
M1 semi-empirical quantum chemistry. The obtained geome-

ries were then optimized on the basis of the ab initio quantum
echanics method for single point calculation at the 3–21 G

evel. The advantage of the semi-empirical method over the
b initio method is that it is faster which is substantial for
iomolecules; however, this may not be important for small
olecules.
Molecular descriptors include binding energy and heat

f formation were obtained from semi-empirical method
alculation; van der Waals force (Vdw) was determined
rom molecular mechanics calculation; dipole moment and
otal energy were obtained from ab initio computation. The
SPR Properties module in HyperChem 7.5 was employed

or further calculation of other descriptors such as solvent-
ccessible surface area (SA), surface-bounded molecular vol-
me (SV), molar refractivity, polarizability, and molecular
ass. The simplest one-dimensional (1D) descriptors include

hree empirical descriptors, unsaturated index (Ui), hydrophilic
ndex (Hy), and aromatic ratio (ARR), as well as three
roperties, Ghose-crippen molar refractivity (MR), fragment-
ased polar surface area (PSA), and Moriguchi octanol-
ater partition coefficient (M log P), were calculated using
ragon Web version (Milano Chemometrics and QSAR group,
ttp://www.disat.unimib.it/vhm). The hydrogen bonding accep-
or (HA), hydrogen bonding donor (HD), and hydrogen bond-
orming ability (HB), sum of HA and HD, were calculated as
escribed by Xia et al. (1998). These calculated descriptors are
isted in Table 2.

.3. Statistical analysis

The relationship between the experimental δ values and

escriptors was determined using PLS regression analysis. PLS
s a bilinear modeling method where information in the descrip-
or matrix X is projected onto a small number of underlying
“latent”) variables called PLS components, referred to as PCs.

http://www.disat.unimib.it/vhm
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Table 1
Experimental, calculated and predicted solubility parameter values

Solubility parameter (MPa1/2) Model 1 Model 2

Expa Hansenb van Krevelen
and Hoftyzerb

Hoyb Train Test

2-Hexanone 18.14 18.51 16.92 20.82 18.96 19.07
2-Pentanone 18.28 18.68 17.17 21.42 19.43 19.51
Acetic acid 21.40 23.54 24.43 24.04 22.77 22.58
Acetone 20.05 19.98 18.29 23.54 20.97 20.97
Acetonitrile 24.10 24.42 25.06 29.24 23.14 23.01
Barbital 27.60 26.06 23.81 29.26 26.53 26.14
Benzene 19.15 18.47 17.26 21.40 18.70 18.88
Benzocaine 31.70 22.77 22.92 22.69 28.46 27.93
Benzoic acid 23.59 21.86 24.78 22.34 22.49 22.38
Butylparaben 21.60 22.75 23.86 21.66 23.35 23.23
Caffeine 26.70 24.84 30.12 c 28.00 27.83
Carbamazepine 32.20 25.52 26.09 22.85 26.40 25.94
Carbon tetrachloride 18.10 17.80 c c 18.22 18.34
Cephalexin 33.45 26.35 28.09 24.77 35.00 33.93
Chloroform 19.00 19.00 21.59 22.19 19.62 19.65
Cyclohexane 17.20 16.63 15.85 19.75 16.06 16.28
Dibutyl phthalate 19.60 20.20 20.08 20.39 19.22 19.48
Diclofenac 24.68 22.14 27.11 21.69 25.81 25.42
Diethyl phthalate 20.50 20.98 21.31 21.40 18.44 18.77
Dimethyl phthalate 22.00 22.04 22.31 22.20 20.73 20.92
Dimethylsulfoxide 26.00 26.67 c c 23.15 23.05
Dioctyl phthalate 18.20 19.21 18.69 19.06 16.91 17.30
Ethanol 26.05 26.49 25.10 30.77 24.90 24.56
Ethyl acetate 18.70 18.13 18.23 21.77 19.24 19.38
Ethyl propionate 17.67 17.14 17.92 21.06 18.57 18.75
Ethylene glycol 29.60 32.90 31.86 38.66 27.84 27.29
Ibuprofen 19.46 19.25 20.56 19.28 20.32 20.32
Isopropanol 23.00 23.51 22.97 25.36 23.39 23.12
Isopropyl acetate 17.12 17.01 17.65 20.46 18.65 18.82
Methanol 29.50 29.61 28.31 31.78 27.83 27.35
Methylene chloride 19.50 20.18 20.83 22.93 20.50 20.48
n-Butyl acetate 17.58 17.41 17.69 20.55 18.22 18.41
Neopentane 12.70 15.00 14.49 18.61 16.31 16.51
n-Hexane 15.50 15.00 14.49 18.61 15.62 15.86
N-Methylpyrrolidone 23.10 22.97 22.11 24.35 21.04 21.05
n-Octane 15.80 15.48 14.89 18.31 14.89 15.17
n-Octanol 19.55 21.04 19.76 21.97 19.90 19.81
n-Pentane 14.80 14.50 14.21 18.84 16.13 16.34
n-Propanol 24.30 24.53 23.26 27.55 23.27 23.02
n-Propyl acetate 18.00 17.49 17.92 21.06 18.70 18.87
Oleic acid 15.95 17.54 17.74 18.54 17.56 17.66
Palmitic acid 16.10 17.63 18.00 18.51 17.22 17.32
p-Aminobenzoic acid 26.67 24.89 28.64 23.94 31.60 30.76
Phenylbutazone 25.10 20.67 22.70 22.10 20.03 20.25
Propylene glycol 28.05 30.20 28.78 32.02 28.57 27.94
Salicylic acid 23.72 25.50 26.71 23.66 23.38 23.25
t-Butanol 21.00 21.67 22.00 21.73 22.39 22.17
Testosterone proprionate 19.40 17.69 19.46 19.09 19.59 19.72
Tetrahydrofuran 19.13 19.41 17.76 23.76 19.13 19.20
Theophylline 27.83 28.11 32.16 c 30.36 29.92
Toluene 17.80 18.13 17.64 20.68 18.39 18.59
RMSEd 2.25 2.38e 3.80f 1.86 1.86 1.88

a Experimental values.
b Calculated using ChemSW.
c Incalculable due to missing fragment values for this method.
d Root mean square error.
e RMSE calculated based on 49 compounds.
f RMSE calculated based on 47 compounds.
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Table 2
Molecular descriptors of compounds

Vdw BE HF D E SA SV RF P MW HD HA HB Ui Hy ARR MR PSA M log P

2-Hexanone 1.31 −1779.26 −69.14 3.06 −192856.3 296.02 435.88 30.02 11.87 100.16 0 2 2 1.00 −0.80 0.00 30.54 17.07 1.44
2-Pentanone 1.07 −1497.32 −62.29 3.04 −168498.1 268.57 381.94 25.42 10.04 86.13 0 2 2 1.00 −0.77 0.00 25.94 17.07 1.06
Acetic acid 0.12 −772.38 −103.07 1.82 −142148.5 193.31 243.77 12.64 5.17 60.05 1 4 5 1.00 −0.43 0.00 12.64 17.07 −0.39
Acetone 0.29 −934.15 −49.31 3.23 −119780.0 209.79 275.29 16.19 6.37 58.08 0 2 2 1.00 −0.65 0.00 16.81 17.07 0.20
Acetonitrile −0.15 −591.88 19.21 3.89 −82321.4 177.06 219.74 11.93 4.46 41.05 0 1 1 1.00 −0.53 0.00 11.93 23.79 −0.32
Barbital 2.40 −2520.80 −123.78 1.35 −401537.9 347.78 546.15 44.25 17.64 184.19 2 8 10 2.00 0.69 0.00 44.25 51.21 −0.16
Benzene 3.10 −1316.08 21.87 0.00 −143960.5 239.98 331.81 26.06 10.43 78.11 0 0 0 2.81 −0.92 1.00 26.06 0.00 2.26
Benzocaine 5.62 −2401.17 −57.92 3.88 −344090.8 363.93 556.34 47.03 18.01 165.19 2 5 7 3.00 0.60 0.50 47.03 26.30 1.78
Benzoic acid 4.67 −1696.09 −68.13 2.42 −261032.9 279.53 408.60 32.82 12.99 122.12 1 4 5 3.00 −0.74 0.67 32.82 17.07 1.70
Butylparaben 5.84 −2913.65 −125.75 3.48 −405177.8 422.15 654.82 53.15 20.97 194.23 1 6 7 3.00 −0.23 0.43 53.15 26.30 2.38
Caffeine 4.87 −2537.70 25.76 5.11 −422599.9 373.25 587.56 49.91 21.25 196.21 0 8 8 3.46 0.70 0.67 42.88 51.56 −0.29
Carbamazepine 5.89 −3424.70 49.44 3.92 −473483.9 421.90 698.13 71.89 27.42 236.27 2 4 6 3.91 −0.82 0.60 67.74 20.31 2.73
Carbon tetrachloride 0.00 −315.05 −28.20 0.00 −1171410.5 244.77 337.94 26.85 10.32 153.82 0 0 0 0.00 −0.18 0.00 2.30 0.00 2.23
Cephalexin 2.83 −4334.01 −70.40 5.51 −921230.6 574.32 944.39 88.98 34.99 347.39 4 13 17 3.46 0.38 0.23 87.01 79.75 0.21
Chloroform 0.00 −339.04 −29.07 1.60 −884833.6 225.08 296.75 21.36 8.39 119.38 0 0 0 0.00 −0.22 0.00 21.37 0.00 1.82
Cyclohexane 1.16 −1689.35 −38.78 0.00 −146150.4 263.25 379.19 27.61 11.01 84.16 0 0 0 0.00 −0.92 0.00 27.61 0.00 3.52
Dibutyl phthalate 11.55 −4295.36 −176.64 2.95 −572953.7 579.99 930.47 76.86 30.23 278.35 0 8 8 3.17 −0.79 0.30 76.86 52.60 3.62
Diclofenac 3.57 −3309.48 −53.80 3.06 −1036134.5 463.54 770.28 75.46 29.69 296.15 2 5 7 3.81 −0.24 0.60 76.95 17.07 3.99
Diethyl phthalate 15.53 −3158.41 −140.07 0.22 −475506.0 414.04 676.26 58.61 22.89 222.24 0 8 8 3.17 −0.73 0.38 58.61 52.60 2.58
Dimethyl phthalate 14.46 −2605.85 −137.69 3.02 −426797.2 392.83 599.48 49.11 19.22 194.19 0 8 8 3.17 −0.70 0.43 49.11 52.60 2.01
Dimethylsulfoxide 0.02 −819.85 −39.50 4.71 −344277.4 221.17 291.96 20.56 78.13 0 4 4 1.00 −0.43 0.00 20.56 36.28 −0.32
Dioctyl phthalate 12.71 −6537.50 −218.03 1.27 −767808.6 736.69 1280.70 113.41 44.91 390.56 0 8 8 3.17 −0.85 0.21 113.41 52.60 5.43
Ethanol 0.15 −776.72 −62.77 1.94 −96145.3 192.92 242.08 13.01 5.08 46.07 1 2 3 0.00 0.71 0.00 13.01 0.00 −0.17
Ethyl acetate 0.78 −1321.87 −102.38 1.90 −190864.2 260.38 361.52 22.16 8.84 88.11 0 4 4 1.00 −0.61 0.00 22.16 26.30 0.59
Ethyl propionate 1.33 −1603.02 −108.43 1.78 −215224.2 292.88 417.41 26.79 10.67 102.13 0 4 4 1.00 −0.67 0.00 26.79 26.30 1.00
Ethylene glycol 0.03 −881.12 −107.61 0.00 −142849.9 208.29 266.30 14.55 5.72 62.07 2 4 6 0.00 1.84 0.00 14.55 0.00 −1.05
Ibuprofen 4.09 −3381.77 −103.24 1.94 −407179.9 438.16 705.08 60.73 24.00 206.28 1 4 5 3.00 −0.85 0.40 60.73 17.07 3.23
Isopropanol 0.62 −1057.23 −68.19 1.92 −120508.0 221.41 293.23 17.43 6.92 60.10 1 2 3 0.00 0.37 0.00 17.43 0.00 0.35
Isopropyl acetate 1.21 −1601.05 −106.46 1.78 −215225.9 288.54 410.27 26.58 10.67 102.13 0 4 4 1.00 −0.67 0.00 26.58 26.30 1.00
Methanol 0.00 −495.95 −57.10 2.10 −71783.2 156.84 184.06 8.26 3.25 32.04 1 2 3 0.00 1.40 0.00 8.26 0.00 −0.81
Methylene chloride 0.00 −359.00 −25.92 2.19 −598253.6 199.60 252.79 16.44 6.47 84.93 0 0 0 0.00 −0.26 0.00 16.44 0.00 1.36
n-Butyl acetate 1.18 −1885.70 −116.02 1.93 −239580.7 320.61 469.90 31.29 12.51 116.16 0 4 4 1.00 −0.71 0.00 31.29 26.30 1.37
Neopentane 2.38 −1512.67 −33.00 0.00 −122520.2 254.59 363.61 24.63 9.95 72.15 0 0 0 0.00 −0.90 0.00 24.63 0.00 3.14
n-Hexane 1.28 −1799.85 −45.09 0.00 −146873.4 300.66 433.22 29.41 11.78 86.18 0 0 0 0.00 −0.92 0.00 29.41 0.00 3.52
N-Methylpyrrolidone 0.15 −1536.39 −40.47 4.05 −202117.6 266.95 382.25 27.15 10.61 99.13 0 3 3 1.00 −0.67 0.00 27.15 20.31 0.20
n-Octane 1.78 −2363.82 −58.86 0.00 −195589.5 362.65 540.69 38.61 15.45 114.23 0 0 0 0.00 −0.95 0.00 38.61 0.00 4.20
n-Octanol 1.65 −2468.57 −104.06 1.87 −242294.1 378.34 565.26 40.54 16.09 130.23 1 2 3 0.00 −0.20 0.00 40.54 0.00 2.27
n-Pentane 1.02 −1517.87 −38.20 0.05 −122515.4 270.55 379.59 24.81 9.95 72.15 0 0 0 0.00 −0.90 0.00 24.81 0.00 3.14
n-Propanol 0.38 −1058.73 −69.68 1.85 −120503.8 224.65 296.48 17.53 6.92 60.10 1 2 3 0.00 0.37 0.00 17.53 0.00 0.35
n-Propyl acetate 0.94 −1603.77 −109.18 1.96 −215222.7 291.24 416.27 26.69 10.67 102.13 0 4 4 1.00 −0.67 0.00 26.68 26.30 1.00
Oleic acid 3.00 −5150.39 −183.78 1.73 −531135.3 683.09 1095.46 87.40 34.33 282.47 1 4 5 1.59 −0.89 0.00 87.40 17.07 4.67
Palmitic acid 3.36 −4718.84 −198.22 1.73 −483162.8 620.30 992.30 77.08 30.86 256.43 1 4 5 1.00 −0.87 0.00 77.08 17.07 4.29
p-Aminobenzoic acid 4.65 −1864.02 −70.95 4.60 −295376.2 298.33 443.69 37.52 14.34 137.14 3 5 8 3.00 0.76 0.60 37.52 17.07 1.13
Phenylbutazone 4.42 −4611.51 22.52 0.69 −617609.0 563.02 943.42 88.76 35.04 308.38 0 6 6 3.91 −0.81 0.48 85.42 40.62 2.89
Propylene glycol 0.56 −1164.80 −116.19 3.12 −167215.9 232.31 314.87 18.97 7.55 76.10 2 4 6 0.00 1.46 0.00 18.97 0.00 −0.53
Salicylic acid 6.38 −1957.93 −54.88 1.76 −285370.3 299.70 450.03 38.15 14.83 136.15 1 4 5 3.00 −0.15 0.60 38.46 17.07 1.49
t-Butanol 1.09 −1335.93 −71.79 1.83 −144871.1 244.22 339.20 22.07 8.75 74.12 1 2 3 0.00 0.17 0.00 22.07 0.00 0.80
Testosterone proprionate 10.71 −5761.14 −155.62 5.26 −671643.6 570.19 1008.95 98.21 38.67 344.49 0 6 6 2.00 −0.87 0.00 93.71 43.37 4.64
Tetrahydrofuran 0.31 −1218.50 −58.57 2.35 −144128.7 230.61 311.60 20.55 7.98 72.11 0 2 2 0.00 −0.72 0.00 20.55 9.23 0.41
Theophylline 4.01 −2204.36 31.90 5.01 −397946.9 339.50 529.06 44.16 18.97 181.17 1 8 9 3.46 0.77 0.71 27.51 51.56 −0.63
Toluene 3.35 −1598.87 14.18 0.31 −168319.2 267.46 384.69 31.10 12.27 92.14 0 0 0 2.81 −0.94 0.86 31.10 0.00 2.61

Vdw, van der Waals force; BE, binding energy (kcal/mol); HF, heat of formation (kcal/mol); D, dipole moment (Debyes); E, total energy (kcal/mol); SA, solvent-accessible surface area; SV, surface-bounded
molecular volume; RF, molar refractivity; P, polarizability; MW, molecular mass; HD, hydrogen bonding donor; HA, hydrogen boding acceptor; HB, hydrogen bond-forming ability; Ui, unsaturated index; Hy,
hydrophilic index; ARR, aromatic ratio; MR, Ghose-crippen molar refractivity; PSA, fragment-based polar surface area; M log P, Moriguchi octanol-water partition coefficient.
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he matrix Y is simultaneously used in estimating the “latent”
ariables in X that might be most relevant for predicting the Y
ariables.

The number of significant PCs for the PLS algorithm is deter-
ined using the cross-validation method. With cross-validation,

ome samples are kept out of the calibration and used for pre-
iction. The process is repeated so that all samples are kept out
nce. The value for the left out compound is then predicted and
ompared with the known value. The prediction error sum of
quares (PRESS) obtained in the cross-validation is calculated
ach time that a new PC is added to the model. The optimum
umber of PCs is concluded as the first local minimum in the
RESS versus PC plot. PRESS is defined as

RESS =
n∑

i=1

(ŷ − y)2 (8)

here ŷ is the estimated value of the ith object and y the corre-
ponding reference value of this object. The goodness of fit is
valuated by root mean squared error (RMSE), which is defined
s

MSE =
√

PRESS

n
(9)

here n is the number of compounds.
The data analysis and multivariate calibrations were car-

ied out using Unscrambler 6.1 (Computer-Aided Modelling
/S, Trondheim, Norway). All descriptor variables were pre-
rocessed by autoscaling, using weights based on the variables’
tandard deviation and the data were mean-centered.

A descriptors selection was performed in order to limit
he amount of potentially irrelevant or redundant information.
he selection was determined according to the magnitude of

he absolute values of regression coefficients and the variable
mportance on the projection (VIP) obtained by the PLS regres-
ion (Chong and Jun, 2005). The insignificant descriptors were
eft out of the model and their importance for predictivity was
etermined by a cross-validation procedure. If the predictivity of
he model increased, the descriptors in question were removed
rom the model otherwise the descriptors were kept in the
odel.
To establish the predictive power of a model, one needs to

ivide the available data set into the training and test sets. In

eneral, a training set should contain 60–80% of the full data. For
ssigning compounds to training and test sets, compounds were
rdered by δ values, and every third was selected for the test set,
he remaining compounds were used as a training set. The test

1
d
fi
o

able 3
LS statistics of the derived PLS models

R2 Q2 NPC Ntr F

odel 1 0.853 0.813 2 51 138.88
odel 2 0.854 0.801 2 34 90.70

2, squared correlation coefficient; Q2, squared cross-validated correlation coefficien
et; F, ordinary F value; RMSEtr, root mean squared error for the dependent variable
or the dependent variable from the cross-validation procedure of the training set; Nt

he dependent variable of the test set.
al of Pharmaceutics 325 (2006) 8–14

nd training sets comprised 17 and 34 compounds, respectively,
nd indicated in Table 1 (model 2).

. Results and discussion

The data set used consists of 51 compounds with experimen-
al δ values ranging from 12.70 to 33.45 MPa1/2 (Table 1). All
escriptors generated from their molecular structures are simple
o calculate with suitable software. These molecular descriptors
ere selected according to the relationship between compounds’
hysicochemical properties/interactions and solubility parame-
ers (Hildebrand, 1936; Hansen and Skaarup, 1967) and are listed
n Table 2. Since δ values are correlated with cohesive energy
ensity, the reciprocals of SA and SV were used in this PLS
nalysis accordingly.

PLS analysis was initially applied to the complete data set
f 51 compounds and 19 descriptors. The preliminary analysis
ielded a model containing three PCs with a squared correlation
oefficient (R2) of 0.865 and a squared correlation coefficient
or cross-validation (Q2) of 0.799. According to the comparison
etween the R2 and Q2, as well as the predicted RMSE value
RMSEcvtr of 2.180) and the calibration RMSE value (RMSEtr

f 1.776), it may specify that the model is slightly overfitted. In
ccordance with the PLS analysis, no outlier was observed from
his data set.

Although collinearity is not a problem for PLS, the use
f the reduced number of significant descriptors may be able
o improve the performance of the model (Andersson et al.,
002; Seggiani and Pannocchia, 2003; Tantishaiyakul and
ongpuwarak, 2005). To obtain a model containing fewer

escriptors, the insignificant or redundant descriptors were
emoved individually. Such descriptors include Vdw, bind-
ng energy, total energy, polarizability, MW, HA, ARR, MR,
SA, and M log P. According to the descriptor selection, MR is
emoved while the molar refractivity obtained from HyperChem
s retained. This may indicate that the former (Ghose-crippen

olar refractivity) from Dragon is probably less informative
han the latter.

As can be seen in Table 3, reducing a number of descriptors
ertainly does not produce negative effects on the predictive
bilities of PLS models. The resulting PLS model provides

comparable but slightly more balanced model (model 1)
han the original one with RMSEcvtr of 2.096 and RMSEtr of

.857. This demonstrates that the information contained in the
escriptors is successfully used in this new derived model. The
nal reduced model, thus, involved 9 descriptors including heat
f formation, dipole moment, molar refractivity, 1/SA, 1/SV,

RMSEtr P RMSEcvtr Nts RMSEpts

1.857 <0.001 2.096
1.855 <0.001 2.172 17 1.883

t; Npc, number of PLS components; Ntr, number of compounds in the training
of the training set; P, level of significance; RMSEcvtr, root mean squared error
s, number of compounds in the test set; RMSEpts, root mean squared error for
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Table 4
Scaled PLS regression coefficients of models 1 and 2

Descriptor Model 1 Model 2

Constant 16.039 16.321
Heat of formation 0.845 0.810
Dipole moment 1.104 1.119
Molar refractivity −0.068 −0.079
Hydrogen bonding donor 1.476 1.353
Hydrogen bond-forming ability 1.170 1.200
Unsatuarated index 0.723 0.752
V. Tantishaiyakul et al. / International

D, HB, Ui, and Hy; these variables can undoubtedly supply
n adequate amount of significant information for the solubility
arameter predictive model.

To estimate the external predictive ability of this multivariate
LS model, 17 compounds were selected as the external test set
nd the remaining 34 compounds were employed as a training
et. The developed model 2 based on the molecular descriptors
sing in model 1 shows a good predictive ability as shown in
able 3. In addition, Fig. 1 presents that models 1 and 2 give a

ood fit to the one-to-one correlation line.

The types of descriptors providing the best predictive results
n these PLS models are related to energy, surface area, surface
olume, hydrogen bond and polar component of compounds. In

ig. 1. Relationship between experimental vs. calculated and/or predicted
olubility parameters of (A) model 1, (B) model 2 and (C) Hansen’s method.

Hydrophilic index 1.673 1.638
1
1
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/solvent accessible surface area 0.469 0.393
/surface-bounded molecular volume 0.496 0.421

eneral, HyperChem accurately calculates heat of formation by
ubtracting atomic heats of formation from the binding energy.
his descriptor is somewhat related to cohesive energy (Yingling
t al., 2001; Campbell and Starr, 2002), therefore, it is selected
n the models. SV is also an important parameter and associated
ith δ calculation as indicated in Eq. (1). SA is interrelated to
V, it is significant for predicting δ values as well. Additionally,
ipole moment, which obviously describes the polar component
f the compounds is one of the most important descriptors of the
erived models. Two descriptors HD and HB are precisely the
ydrogen bonding components, and thus they were selected for
enerating the models. The HA descriptor may be redundant
or the models which comprise both HD, and HB descriptors
s well as other additional related descriptors such as Hy. This
y descriptor directly reflects the hydrophilicity of a molecule.
nother employed descriptor is Ui, which is calculated based
n a number of multiple bonds in the molecule including double
onds, triple bonds and aromatic bonds. Regarding the molar
efractivity descriptor, this parameter represents the volume of
he molecules and also accounts for their dispersion and polar
omponents (Barton, 1975). The scaled regression coefficients
f models 1 and 2 are presented in Table 4. Accordingly, this
uggests that with increasing heat of formation, dipole moment,
D, HB, Ui and Hy, the compounds get higher δ values. Mean-
hile, the increase of molar refractivity, SA and SV reduces the

ompounds’ δ values.
Furthermore, the calculations of δ values of these 51 com-

ounds using model 1 were compared to the well established
ansen’s, van Krevelen and Hoftyzer’s, and Hoy’s approaches.
s shown in Table 1, RMSE of model 1 is slightly less than those
btained from the established methods, indicating the somewhat
igher prediction ability of the derived PLS model. This rela-
ionship between experimental and calculated δ values using
ansen’s approach is also presented in Fig. 1.
In conclusion, the PLS models with good predictability for δ

alues were developed in this study. These reliable models are
ased on simple calculated descriptors from structures. Such
ethod of descriptor calculation has advantages over a group

ontribution approach in terms of its accounting for the interac-

ions between neighboring groups, and also its applicability for
he new molecule containing a novel functional group not previ-
usly reported. As such, these models are beneficial for design
f new compounds with the required δ values.
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